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ABSTRACT

This paper is to appear in the conference volume on "Accelerated Life

Testing and Experts' Opinions in Reliability." C. Clarotti and D. V.

Lindley, editors. The conference took place in Lerici, Italy, July 2S to

August 1, 1986. -This paper is- anexposition of the ideas of R. A. Howard.

J. E. Matheson, and R. D. Shachter, "tdis intended primarily for a

statistical audience. The influence diagram can be used to model almost any

statistical problem of interest. In most cases, it graphically highlights

conditional independence relationships implied by the model. Using decision

nodes, the influence diagram provides an alternative to the decision tree

for Bayesian decis:on analysis. /
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1. INTRODUCTION

Too often in contemplating a statistical analysis, the statistician

becomes absorbed with the mathematical details such as particular

probability densities, sufficient statistics, and computational methods,

without fully understanding the problem at hand. Influence diagrams provid!

a valuable aid for modeling the logical and statistical dependencies betwc'.

random quantities and also between these quantities and decision

alternatives. This can be done, initially, without specifying particular

probability functions.

The influence diagram is a graphical representation of the

relationships between random quantities which are judged relevant to a real

problem. In this respect it is a modeling tool. The probability weights or:

the graph nodes are also based on judgements relevant to a real problem.

Although the influence diagram is an abstract mathematical model, its

validity is based on some real problem of interest.

Influence diagrams were developed as a Bayesian computer aided modcli..

tool by Howard and Matheson [1984]. Influence diagrams also provide a

graphical representation of conditional independence for random quantities.

An algorithm for solving Bayesian decision analysis problems through

influence diagram manipulations was constructed by R. Shachter [19S6]. TIi .

algorithm is useful in statistical applications, especially in experimental

design [e.g. Barlow and Zhang (1986)]. The influence diagram is also a

generalization of the fault tree representation used in engineering risk

analysis.
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The influence diagram is a modeling alternative to the decision tree.

Since the order of event expansion required by the decision tree is rarely

the natural order in which to assess the decision maker's information, thc

influence diagram may be more useful. For an excellent introduction to

decision analysis and decision trees see Lindley [1985].

This paper is largely tutorial since the basic ideas were developed

elsewhere. However some of the proofs are original. We begin the

discussion with influence diagrams having only probabilistic nodes.

Deterministic and decision nodes are treated in later sections.

2. PROBABILISTIC INFLUENCE DIAGRAMS

A probabilistic influence diagram is first of all a directed acyclic

graph. Circle nodes in the graph denote random quantities. Arcs joining

circle nodes denote possible statistical dependence. Associated with each

circle node is a conditional probability function. Conditioning is only

with respect to immediate predecessor nodes and is indicated by the

direction of the arrows. In Figure 2.1, z is an immediate predecessor of S

both x and y. From the graph in Figure 2.1. the joint probability functio.,

p(x.y.z). is p(z)p(xjz)p(yji Hence from the graph, the random quantity x

is conditionally independent of y given z. Note that there is no arc

joining nodes x and y. Absence of an arc between two nodes indicates that

the node random quantities are conditionally Independent given the state of

immediate predecessor nodes. This will be proved later.

The influence diagrams in Figures 2.1 and 2.2 are fundamentally

different. From the graph in Figure 2.2 the joint probability function

I



x P(X4.

.4.

P(Z.4.

y P('.4.

c<.

Figure 2.

x andy CoditioallyIndepnden
Given z

x and Cnioly Independent



p(x,y,z) is p(x)p(y)p(zlx,y). Hence, in this case, random quantities >: anc

y are unconditionally independent. As we show later, nodes without irp,1r

arcs are always unconditionally independent.

Given a directed acyclic graph together with node conditional

probabilities, there exists a unique joint probability function

corresponding to the random quantities represented by the nodes of thp

graph. This is because a directed graph is acyclic if and only if there

exists a list of the nodes such that any successor of a node i in the grap,.

follows node i in the list as well.

Relative to the acyclic graph in Figure 2.3, we can find a list

ordering which agrees with the graph ordering. Since the graph is acyclic.

at least one node must be a root node (i.e., have no inward pointing arcs).

Since x is such a node, let x be the first node in the list ordering. No.

delete node x 1 and all arcs incident to x 1 from the graph. Again, the

remaining graph must be acyclic and have at least one root node. Clearly . %

is such a node. Proceeding in this way we obtain the list ordering %

x1 < x3 < X2 < X4

which agrees with the graph ordering. (The list ordering, however, is not

in general unique). It follows that the joint probability function for X

x2 , x3 , x 4 can be calculated as

P(x 1 x2 , x3 ,x4 ) = p(x 1 )p(x31x 1 )p(x21x 1 ,x 3 )p(x4fx 11x 2 x 3 )

p(x 1 )p(x3 lx1 )p(x2jx 1 ,x3 )p(x4 x2 x3 )

since, from the graph, x4 depends only on x2 and x3 . If the gra t were i,(,

acyclic. the conditional probability weights oTI the graph nodes would 1,(,t

determine the joint probabililty function of the node random quantities.

%.

, ............................... " ". ... ... -"' ; """: "" "".-" ""'"" .. •..
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3. ONDITIONAL INDEPENDENCE

We will need the concept of a directed path. By a directed path fro7.

node x to node x. we mean a chain of ordered pairs (xi  ). (Xk xk
n x1 2

-(- .xt ) corresponding to directed arcs which lead from x. to x.. If thCr
t 3 3

is no path (directed or undirected) in an influence diagram from one node t,,

another, then the corresponding random quantities are unconditionally

independent. In graph theory terminology, the graph is disconnected and 0.,

nodes are in separate components.

In Figure 3.1. ovals are used to denote disjoint sets of immediate

graph predecessor nodes. Thus w. denotes a set of immediate predecessor1

nodes to xi which are not also immediate predecessors of xj, while wij

denotes a set of nodes which are immediate predecessors of both x. and x..
J

Theorem 3.1. In an influence diagram, if there is no arc from x. to x. nor1

is there an arc from xj to xi. then x. and x. are conditionally independen-

given immediate predecessor nodes; i.e.,

P(Xi, Xj i W *wj, Wij)

= p(xilWi,wij) p(X Jwj,w ij)-

Proof. Since an influence diagram is acyclic, there exists a list orderi.-

which car be used to calculate the joint distribution of node random

quantities; i.e..

p(x l x2 ... ..xn) ... p(x i w i.w .).. .p(xjw.,w. ....

Fix x. * xj, w.i wj. wij, divide by p(wi.wj.wij) > 0 and integrate wit!

respect to all other random quantities. Since x. and x. do not belong toJ

(wi,wjwj) we have

-7p
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p(xi .x3 1w Wi. wJ ) = p(xi w i w ij) p(x iw jw i).

QED

In Figure 2.3. xI and x4 are conditionally independent given x2 arid x

since xI has no predecessors and x2 and x3 are immediate predecessors of x-1

Corollary 3.2. In an influence diagram, if nodes xi and x. have no irco!':.
1 .3

arcs, i.e., (wi.wij.wj) is empty. then x. and x. are unconditionally

independent.

Proof. Since x. and x. have no incoming arcs, they have no connecting arc

and Theorem 3.1 applies. Since (wi w ,w ) is empty, x. and x. are
V ij 1 .

unconditionally independent.

QED

Although the probabilistic influence diagram is a useful device for

illustrating independence, it may not graphically display all the

independence relationships implied by the joint probability function. We

can use Figure 2.2 again to illustrate these ideas. Suppose a crime has

been committed and z denotes the blood type of a blood stain found at the

scene of the crime. A suspect is in hand. Let y be the suspect's blood

type. For convenience we consider only two blood types, say type 1 and type.

2. Let p(y=l) = 0 where 0 is the frequency of blood type I in the generil

population.

Let

I if the suspect is guilty

0 otherwise.

Let p(z=l y=l. x=l) I 1

and p(z=ll y. x=O) = 0.

Let p(x=l) be our prior probability that the suspect is guilty.

, t" "c. r',* ' ,, L. ',c '._,r ,r r,,', , ,L,' :.,',, .€. , ,, , , . %,' ."*"'e e". ." ,''" e ".. .'.'-. : ,'.,, o'_ ,_w ".,_., e " ". " ..5

A. 4 -
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As Figure 2.2 shows, we have judged x and y independent, a priori, t,:

is. the guilt or innocence of the suspect is independent of his/her blood

type. However. if the suspect is guilty and his/her blood type is 1. thl:i m

we have judged that the blood stain found at the scerie of the crime must

also be type 1 so that x, y and z are not independent. But we have ais,

judged x and z independent and this is not obvious from the graph. It is

only clear after we do the probability calculations. (However, it can be ,

shown that y and z are dependent in this case.)

4. BAYES' THFOREM

Two probabilistic influence diagrams with the same nodes and the saMe

joint probability function for random quantities will be said to be

equi alent. Under certain conditions we can reverse the arc between two

nodes, add arcs and, after replacing the node conditional probability

weights by appropriate new conditional probabilities, the two probabilistic

influence diagrams will be equivalent.

Theorem 4.1. In an Influence diagram [cf. Figure 4.1] suppose there is an

arc from node x. to x. but no other directed path from node x. to node x..

If

1. arcs from w. to x. and from w. to x. are added:
j J

2. the arc from x. to x. is reversed;
1

3. p(x jix i w w. ) is replaced by

p(x 1wi.w..wi.) : fp(x.Ix i.w.w. ) p(x.iw .wi ) dxi > O:

and 4. P(xi 1w ,w ) is replaced by '.

p(x Ix j .w.,w ) = p(x.ix..w C .w. .) P(> ' i Cw .)/ p(xjw i.w j .w i j )

i ji 313 1313 11133131

j
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(i.e., Bayes' theorem) then the probabilistic influence diagrams are

equivalent; i.e., the influence diagrams in Figures 4.1 and 4.3 are

equivalent.

Proof. Since there is only one directed path from xi to x j, namely the arc

from x. to xj , we can add arcs from wi to x. and from wj to xi without

creating any cycles. This will only create pseudo dependencies. Clearly

the influence diagram corresponding to the augmented graph. Figure 4.2. is

equivalent to the original influence diagram.

Consider a list ordering for the augmented graph. Clearly xi must

precede x j in this list ordering, and in fact

.. < ((wi wj. wij x x <

since there is no other directed path from xi to xj; i.e.. there can be noI

other nodes between xi and xj in the list ordering.

We need only show that the joint probability function for the

transformed influence diagram in Figure 4.3 is the same as that for the

original influence diagram. The joint probability function for the original

influence diagram based on the list ordering for the augmented influence

diagram will contain the two terms

p(xilwi-wij) P(x Ixi.w~wij). (4 .1)

If we both multiply and divide (4.1) by

P(xjfwi'wjwij) = I P(xjlxiwj Wij) p(x i lw i .w i j ) dxi > 0

then (4.1) becomes

P(XiIxjowi.wj .w i j ) P(xjw i wj .w i j )

by Bayes' theorem. The joint probability functions are equal since all the

other terms in the two joint probability functions are the same.

QED

-- ' -
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Arc reversal corresponds to applying Bayes" theorem. However it also

involves the addition of arcs. These arcs may. in some cases, involve oiiv

pseudo dependencies. In this sense information may have been lost as a

result of arc reversal. For these reasons, we want to avoid arc revers:,,

whenever possible.

5. BARREN NODES

Consider Figure 5.1 and the problem of calculating p(x 1 jx5).

Distinguish nodes x and x5 by shading them as in Figure 5.1. Relative to

our problem. we claim that node x is irrelevant. That is. relative to our

problem, we can delete node x 4 and all arcs incident to node x4 . The reus>,

we may do this is that in any list ordering for the influence diagram, riodc

x4 may always be listed last; i.e.,

xl < x3 < x2 < x 5 < x4

and we can calculate the joint probability function

P(X I .x5 )

without reference to node x4 . Hence, x4 is noninformntive relative our

problem. "N

In general let xj [xK] denote a vector of nodes

{x l i } [{x~i i ( K}]

where J n K = . . If we are interested in calculating p(x JIK ) or
whr Or ')(x U K. "

we first distinguish nodes xi where i EJ UK.

Definition. (Barren Node). In at, influence diagram with nodes {x i

K} distinguished and J fn K = 4). we say that node xb is barren with res;,L't 4.

to the distinguished nodes if

,*--, ,-,. .-.,. ,,- .-.,- .- 4 ,.. . .- . . . . . ... . ,. ....... ..- . . .... - .-_ • . . .-. .. '



X 44

Figure 5.

Figure 5.2



1. bEJUK;

and 2. all arcs incident to xb point toward xb .

Theorem 5.1. Given a probabilistic Influence diagram with distinguished

nodes (xi[ i E J U K} and any node xb. b f J U K. we can always find an

equivalent influence diagram in which node xb is barren with respect to

J U K.

Proof. Figure 5.2 represents node xb in the influence diagram where
Xil < x1 I <"'" < xr "

11 12 r

are the immediate predecessor nodes of xb and
x i < x 2 ... < x

are the immediate successor nodes of xb . Node xb will become barren if we

can reverse all the arcs from xb to successor nodes without changing the

Joint probability function p(xit I E J U K).

ly Theorem 4.1 we can first reverse the arc from xb to x.1• since this

cannot introduce a cycle. (Note that were we to reverse the arc from xb to

xJ2 first we could possibly introduce a cycle.) Proceeding in this way we

will. by Theorem 4.1. eventually have an equivalent influence diagram in

which xb is barren with respect to J U K.

QED

6. AN ALGORITHM FOR CALCJLATING P(xKXlx .)

To calculate p(XNI xj) we first distinguish nodes {x i li J C U K.

Let xB be the vector of nodes which are neither predecessors nor successors

of (xj. XK). (A node. xi . is a predecessor (successor) of another node. x
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if there Is a directed path from x i (xj) i Let xPred denote the

vector of predecessor nodes to (xj, x,<) and xs the vector of successor node,

to (xj. XK). Then there exists a list ordering for the influence diagram

such that

XPred < (xJ. xB. xK) ' xS .

Clearly xs are barren relative to our problem and may be deleted. Hence wc

need only consider the remaining graph with xs and the arcs incident to xS

deleted.

By Theorem 5.1 we can convert all nodes in xB to barren nodes in such a

way that the resulting influence diagram will have the same joint

probability function with respect to (xpd. xj. xK) as did the original
influence diagram."

To calculate p x we need only integrate the joint probability

function for (Xpred. xj, XK). namely
P(xpred) p(xJIx K XPred)

with respect to XPred to obtain p(xj.xK) from which we can calculate

The suggested algorithm is in the nature of an existence theorem in tl,t '4

sense that P{xK[Xj) can be found by graphical and probabilistic

manipulations using the concept of arc reversal. However an efficient

algorithm for doing this is the subject of current research efforts.

L

7. DECISION NODES AND VALUE NODES

Decision nodes and value nodes are special. A decision node.

represented by a rectangle, denotes a decision function. d mapping the I.

-- ' %.,P * A,., .., ,,
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states of imiediate input nodes into a set of decision alternatives

(dil. di2 . ... di}. (We will often use di to represent the decision

function as well as the decision taken.) The states of immediate input

nodes to a decision node constitute the information available at the time oI

decision. The decision taken depends on the states of immediate predecesso:

nodes. Decision nodes introduce a time ordering into the influence diagram

which was not present in the probabilistic influence diagram. If decision

node di precedes decision node d. in the graph, then decision d. must beJ 1-.

taken before decision d.. Neither the arcs input to a decision node nor tl, .

arcs output from a decision node can be reversed.

Figure 7.1 is an influence diagram with two decision nodes. d1 and d2 ,

a value node. v. and probability nodes x. y. z and 0. [This is the

influence diagram for the calibration experimental design problem considere"

in Barlow. Mensing and Smiriga (1986)]. At the time of decision d2 ' the

decision d which was taken as well as the states of probability nodes y an
1

x are known. The state of probability node z is not known at the time of

decision d1 or decision d2 since it is not an immediate predecessor node of

either decision node. An influence diagram with decision and value nodes

must be acyclic. For example, if there were a directed path from decision

node d back to d this would imply that we could foretell the future since

decision d2 occurs after decision d

A value node. v, represented by a diamond in Figure 7.1. is a

deterministic function of the states of immediate predecessor nodes. A

value node has only inward pointing arcs. In Figure 7.1. v(-,*) depends on

the decision. d2. taken as well as the state of probability node z. The
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optimal decision functions, d1 and d2. will depend on the value node. Ir,

this sense the value node corresponds to the objective (or utility) furcti>:

for a decision problem.

8. NODE REDUCTION AND DECISION ANALYSIS

By node reduction, we mean the elimination of a node and its incident

arcs in an influence diagram. As we have seen, the reduction of a

probability node is valid with respect to distinguished nodes if the

probability node is not distinguished and if it is barren (i.e.. all

incident arcs point inward). The op, ial decisions relative to a decision P

problem can be found by using node reduction and then by maximizing (or

minimizing if the value node corresponds to a loss function) a related valu,

function.

A list ordering for the influence diagram in Figure 7.1 is

d < z < e < x < y < d < v.
1 2

In Figure 7.1. with decision alternatives dI and d2 specified, the joint

probability function for random nodes x. y, z and 6 is

p(xy.z.0I dl.d 2 ) = p(z) p(O) p(xldl.O) p(yIO.z).

To determine the optimal decision function. d in Figure 7.1 we must

first express the value function. v(.), as a function only of d2 and the

states of immediate predecessor nodes to d namely d x and y. The steps
2' 1V

in our solution algorithm are as follows:

1. fix the state of all immediate predecessor nodes for all decisioi ,

nodes;

-/.;...~ ~ .... .,.. ... . . .. ... .... ..



2. reduce all nodes which ai- predecessors of v (not just immediate

predecessor nodes) that are not decision nodes and are not immediate

predecessors of decision nodes;

3. maximize the resulting value function with respect to possible

decision alternatives d2 (which of course may depend on d,, x and y).

In Figure 7.1. z is a special probability node since it is an immedi:!',

predecessor of v. To reduce a probabilistic predecessor of a value node,

must first reverse all other output arcs. This is of course with the

proviso that it has no output arcs to decision nodes since these cannot be

reversed. We can always do this since the value node may always appear la'-

in an ordered list. Figures 8.1 and 8.2 Illustrate the reduction process.

Figures 8.3-8.5 illustrate the decision solution process for a subset

of the influence diagram in Figure 7.1. Nodes d, v and y are distinguished.

Nodes 0 and z are reduced leaving only the distinguished nodes. The

reduction process does noc change the marginal distribution of y. Finally.

for a given value of y. we find a value of d for which

f v(dz) p(zly)dz

is maximum. This value for d is our optimal decision.

OONCLUDING REMARKS

The influence diagram can be used to model almost any statistical

problem of interest. In most cases, it graphically highlights conditional

independence relationships implied by the model. Using decision nodes, the

influence diagram provides an alternative to the decision tree for Bayesial.

decision analysis.

- ...-. ..:......=;-.. ..:%-...-..........--... .............. ,................. .......-.. ,.-;
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